Skip to main content

Diferença Entre O Modelo De Média Móvel E Autoregressiva


Um RIMA significa modelos de Redes Mover Integradas Autoregressivas. Univariado (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série inteiramente baseada em sua própria inércia. Sua principal aplicação é a previsão de curto prazo que requer pelo menos 40 pontos de dados históricos. Isso funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de valores atípicos. Às vezes, chamado Box-Jenkins (após os autores originais), o ARIMA geralmente é superior às técnicas de suavização exponencial quando os dados são razoavelmente longos e a correlação entre observações passadas é estável. Se o dado for curto ou altamente volátil, algum método de suavização poderá ser melhor. Se você não tem pelo menos 38 pontos de dados, você deve considerar algum outro método que o ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaria. A estacionarização implica que a série permanece em um nível bastante constante ao longo do tempo. Se existe uma tendência, como na maioria das aplicações econômicas ou empresariais, seus dados NÃO são estacionários. Os dados também devem mostrar uma variância constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e cresce a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem essas condições de estacionaridade, muitos dos cálculos associados ao processo não podem ser computados. Se um gráfico gráfico dos dados indica não-estacionária, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não estacionária em uma estacionária. Isso é feito subtraindo a observação no período atual do anterior. Se essa transformação for feita apenas uma vez para uma série, você diz que os dados foram diferenciados pela primeira vez. Este processo elimina essencialmente a tendência se sua série estiver crescendo a uma taxa bastante constante. Se estiver crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferenciar os dados novamente. Os seus dados seriam então diferenciados em segundo lugar. Autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número especificado de períodos separados estão correlacionados entre si ao longo do tempo. O número de períodos separados costuma ser chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores de 1 período separado estão correlacionados entre si ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados separados por dois períodos estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo de -1 implica uma alta correlação negativa. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma determinada série em diferentes atrasos. Isso é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em uma série de tempo estacionária como uma função do que são chamados de parâmetros verticais autorregressivos e móveis. Estes são referidos como parâmetros AR (autoregessivos) e MA (médias móveis). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo da ordem 1 X (t-1) a série temporal atrasou 1 período E (T) o termo de erro do modelo Isso significa simplesmente que qualquer valor X (t) pode ser explicado por alguma função de seu valor anterior, X (t-1), além de algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse de .30, então o valor atual da série ficaria relacionado a 30 de seu valor 1 há. Claro, a série poderia estar relacionada a mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente precedentes, X (t-1) e X (t-2), além de algum erro aleatório E (t). Nosso modelo é agora um modelo de ordem autorregressivo 2. Modelos médios em movimento: um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos pareçam muito parecidos com o modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros médios em movimento relacionam o que acontece no período t apenas com os erros aleatórios ocorridos em períodos passados, ou seja, E (t-1), E (t-2), etc., em vez de X (t-1), X ( T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo de MA pode ser escrito da seguinte forma. X (t) - B (1) E (t-1) E (t) O termo B (1) é chamado de MA da ordem 1. O sinal negativo na frente do parâmetro é usado somente para convenção e geralmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima simplesmente diz que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autorregressivos, os modelos de média móvel podem ser estendidos a estruturas de ordem superior cobrindo combinações diferentes e comprimentos médios móveis. A metodologia ARIMA também permite a criação de modelos que incorporam parâmetros de média autorregressiva e móvel em conjunto. Estes modelos são frequentemente referidos como modelos mistos. Embora isso faça para uma ferramenta de previsão mais complicada, a estrutura pode simular a série melhor e produzir uma previsão mais precisa. Os modelos puros implicam que a estrutura consiste apenas em parâmetros AR ou MA - e não em ambos. Os modelos desenvolvidos por esta abordagem geralmente são chamados de modelos ARIMA porque eles usam uma combinação de autoregressivo (AR), integração (I) - referente ao processo reverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA geralmente é declarado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você tem um modelo autoregressivo de segunda ordem com um componente de média móvel de primeira ordem, cuja série foi diferenciada uma vez para induzir a estacionararia. Escolhendo a especificação correta: o principal problema no clássico Box-Jenkins está tentando decidir qual a especificação ARIMA para usar - i. e. Quantos parâmetros AR e / ou MA devem incluir. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Dependia da avaliação gráfica e numérica da autocorrelação da amostra e das funções de autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que se parecem de uma certa maneira. No entanto, quando você aumenta a complexidade, os padrões não são facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isso significa que erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é uma arte e não uma ciência. Existem várias abordagens para modelar séries temporais. Descrevemos algumas das abordagens mais comuns abaixo. Trend, Seasonal, Decomposições Residuais Uma abordagem é decompor as séries temporais em uma componente de tendência, sazonal e residual. O abrandamento exponencial triplo é um exemplo desta abordagem. Outro exemplo, chamado loess sazonal, é baseado em mínimos quadrados localmente ponderados e é discutido por Cleveland (1993). Não discutimos o loess sazonal neste manual. Métodos baseados em frequência Outra abordagem, comumente usada em aplicações científicas e de engenharia, é analisar a série no domínio da freqüência. Um exemplo dessa abordagem na modelagem de um conjunto de dados de tipo sinusoidal é mostrado no estudo de caso de deflexão do feixe. O gráfico espectral é a ferramenta principal para a análise de freqüência de séries temporais. Modelos Autoregressivos (AR) Uma abordagem comum para modelar séries temporais univariadas é o modelo autorregressivo (AR): Xt delta phi1 X phi2 X cdots phip X At, onde (Xt) é a série temporal, (At) é ruído branco e delta Esquerda (1 - sum p phii right) mu. Com (mu) denotando o processo significa. Um modelo autoregressivo é simplesmente uma regressão linear do valor atual da série contra um ou mais valores anteriores da série. O valor de (p) é chamado de ordem do modelo AR. Os modelos AR podem ser analisados ​​com um dos vários métodos, incluindo técnicas de mínimos quadrados padrão padrão. Eles também têm uma interpretação direta. Modelos de média móvel (MA) Outra abordagem comum para modelar modelos de séries temporais univariáveis ​​é o modelo de média móvel (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, onde (Xt) é a série temporal, (mu ) É a média da série, (A) são termos de ruído branco e (theta1, ldots,, thetaq) são os parâmetros do modelo. O valor de (q) é chamado de ordem do modelo MA. Ou seja, um modelo de média móvel é conceitualmente uma regressão linear do valor atual da série contra o ruído branco ou choques aleatórios de um ou mais valores prévios da série. Os choques aleatórios em cada ponto são assumidos como provenientes da mesma distribuição, geralmente uma distribuição normal, com localização em zero e escala constante. A distinção neste modelo é que esses choques aleatórios são propagados a valores futuros das séries temporais. Ajustar as estimativas MA é mais complicado do que com os modelos AR porque os termos de erro não são observáveis. Isso significa que os procedimentos iterativos de encadernação não linear precisam ser usados ​​em lugar de mínimos quadrados lineares. Os modelos MA também têm uma interpretação menos óbvia do que os modelos AR. Às vezes, o ACF e o PACF sugerem que um modelo de MA seria uma escolha de modelo melhor e, por vezes, ambos os termos de AR e MA devem ser usados ​​no mesmo modelo (ver Seção 6.4.4.5). Note, no entanto, que os termos de erro após o ajuste do modelo devem ser independentes e seguir os pressupostos padrão para um processo univariado. Box e Jenkins popularizaram uma abordagem que combina a média móvel e as abordagens autorregressivas no livro Time Series Analysis: Forecasting and Control (Box, Jenkins e Reinsel, 1994). Embora as abordagens médias autorregressivas e móveis já tenham sido conhecidas (e foram originalmente investigadas por Yule), a contribuição de Box e Jenkins foi no desenvolvimento de uma metodologia sistemática para identificar e estimar modelos que poderiam incorporar ambas as abordagens. Isso faz com que os modelos Box-Jenkins sejam uma classe de modelos poderosa. As próximas secções discutirão esses modelos em detalhes.

Comments

Popular posts from this blog

Opções Trading Platform Singapore

Tutorial básico de opções Hoje em dia, muitas carteiras de investidores incluem investimentos como fundos de investimento. ações e títulos. Mas a variedade de valores mobiliários que você possui à sua disposição não termina. Outro tipo de segurança, chamada de opção, apresenta um mundo de oportunidades para investidores sofisticados. O poder das opções reside na sua versatilidade. Eles permitem que você adapte ou ajuste sua posição de acordo com qualquer situação que surgir. As opções podem ser tão especulativas quanto conservadoras como você deseja. Isso significa que você pode fazer tudo, desde proteger uma posição de uma queda para apostas abertas sobre o movimento de um mercado ou índice. 13 Essa versatilidade, no entanto, não vem sem seus custos. As opções são títulos complexos e podem ser extremamente arriscadas. É por isso que, ao negociar opções, você verá um aviso legal como o seguinte: 13 As opções envolvem riscos e não são adequadas para todos. A negociação de opções pode se...

Ozforex Calculadora De Taxas De Câmbio

Compare os fornecedores de moeda na Austrália vs Bancos BER Research amp Guides Dólar australiano - Atualizações de mercado BestExchangeRates foi selecionado como delegado para a delegação comercial da Semana da Austrália na China (AWIC) para a China com o primeiro-ministro Malcolm Turnbull em abril de 2016. AWIC 2016 foi o maior negócio A missão já organizada pela Austrade é composta por quase 1000 delegados de cerca de 750 empresas. AWIC 2016 centrou-se na criação de vínculos comerciais, construindo o bilateral. Ver artigo gt Postado em 12 de maio de 2016 3:06 am GMT Autor: BER Admin TradeFinanceGlobal ndash Londres Sexta-feira, 19 de fevereiro de 2016: O juiz está encantado de anunciar que escolhemos o BestExchangeRates como o vencedor do: premio Providência de Comparação de Transferência de Dinheiro ldquoBest International . Sentimos que a empresa adota uma nova abordagem para o mercado de transferência de moeda com a simplicidade e a clareza das informações exibidas. Ver artigo gt...

Quantitative Trading Strategies Excel

Negociação quantitativa O que é negociação quantitativa A negociação quantitativa consiste em estratégias de negociação baseadas em análises quantitativas. Que contam com cálculos matemáticos e crunching de números para identificar oportunidades comerciais. Como a negociação quantitativa é geralmente utilizada por instituições financeiras e hedge funds. As transações geralmente são de tamanho grande e podem envolver a compra e venda de centenas de milhares de ações e outros títulos. No entanto, a negociação quantitativa está sendo mais usada pelos investidores individuais. BREAKING DOWN Quantitative Trading O preço e o volume são duas das entradas de dados mais comuns utilizadas na análise quantitativa como principais insumos para modelos matemáticos. As técnicas de negociação quantitativas incluem o comércio de alta freqüência. Negociação algorítmica e arbitragem estatística. Essas técnicas são rápidas e tipicamente têm horizontes de investimento de curto prazo. Muitos comerciantes qu...